Санкт-Петербург
+7 (812) 316-20-22
+7 (812) 571-20-22

Опыт управления природно-техногенными рисками при строительстве Северо-муйского тоннеля

Технологии
26 октября 2020

Северо-Муйский железнодорожный тоннель на Байкало-Амурской магистрали был сдан в эксплуатацию 5 декабря 2003 года. Строительство велось с перерывами 26 лет. Это было связано с необычно сложными природными условиями, недостаточной изученностью трассы на стадии изысканий, отсутствием опыта проектирования и строительства тоннелей в столь сложных горно-геологических условиях.

ПРИРОДНЫЕ И ТЕХНОГЕННЫЕ РИСКИ

По инженерно-геологическим и гидрогеологическим условиям строительства Северо-Муйский тоннель длиной 15,3 км и глубиной заложения в гольцовой части до 1 км является одним из наиболее сложных тоннелей мира. Объект располагается в Байкальской рифтовой зоне с сейсмичностью более 9 баллов. Высокая сейсмо- активность активность территории связана с неотектоникой — развитием новейших тектонических структур [1]. Характерной особенностью геологии является блоково-разрывное строение Муякан-Ангараканского междуречья.

Горный массив по трассе тоннеля представлен гранитами с коэффициентом прочности по Протодьяконову от f = 6 ÷ 14 до f = 0,2 ÷ 4 с множеством пересекающих трассу разломов разной мощности и обильными водопритоками до 1000 м3 /ч на забой. По материалам изысканий было установлено, что трассу тоннеля пересекает 26 разломов, которые сложены разрушенными и обводненными грунтами. Информацию об инженерно-геологических условиях впереди забоев приходилось уточнять уже в процессе строительства по мере проходки

В строении тектонических зон отмечались сближенные разрывные нарушения мощностью от 4–5 до 30–45 м и более, в пределах которых горные породы находились в неустойчивом состоянии. Эти зоны состоят из водонасыщенных сильнотрещиноватых скальных пород, в центральной части разлома разрушенных до состояния дресвы, песка и глины, находящихся под высокими гидростатическими напорами. При вскрытии забоями таких участков породы переходили в плывунное состояние, и происходили внезапные выбросы и выносы водно-грунтовых масс в подземные выработки.

Вне зон тектонических нарушений наблюдались проявления горного давления в массивах перенапряженных горных пород на участках тоннеля с глубинами заложения более 300 м. Повышенное горное давление проявлялось в виде шелушения, отщепов, динамического заколообразования и «стреляния» пород на контуре выработок.

Наиболее яркие и масштабные динамические проявления горного давления наблюдались со стороны восточного портала тоннеля на глубине около 550 м. Напряженное состояние массива горных пород подтверждалось по данным разведочного горизонтального бурения с отбором керна (происходило «дискование керна»). Диски имели характерную выпукло-вогнутую форму (рис. 1). При проходке разведочной штольни тех же интервалов горнопроходческим комплексом «Роббинс» непосредственно в призабойной части за оболочкой ротора происходило шелушение, «стреляние» и отслоение в виде плиток вогнутой формы по контуру — в основном стен (рис. 2).

В конце 1988 года при проходке подходной штольни от шахтного ствола и рассечки от разведочной штольни к основному тоннелю интенсивность процесса динамических проявлений горного давления стала возрастать. Началось «стреляние», интенсивное образование трещин, заколы и обрушения отслоившейся породы со стенок. Наибольшие объемы проявления разрушений происходили вначале по стенкам сопряжений: на рассечке между разведочной штольней и основным тоннелем, вблизи нее по смежным штольни и тоннелю стенкам. По материалам геологической документации, горный массив на этом участке представлен биотитовыми гранитами, порфировидными с жилами пегматитов и мелкозернистых гранитов мощностью до 60 см, слабо трещиноватыми с коэффициентом крепости по М. М. Протодьяконову f=6÷10, которые не требовали крепления.

На рис. 3 приведены фотографии участков разрушения в результате динамических проявлений горного давления. Причем эти события происходили стремительно, и их продолжительность интервалами была от десятков секунд до нескольких минут, потом перерыв примерно такой же продолжительности и опять разрушения. Данный процесс по мере произошедших разрушений на контуре выработок постепенно затухал, трещины прорастали и углублялись в массив, создавая зону разгрузки.

Многочисленные природные факторы риска осложнялись техногенным вмешательством. Ярким примером можно назвать наведенную сейсмичность.

Проявление землетрясений слабых и средней интенсивности в подземных условиях во время строительства Северо-Муйского тоннеля наиболее часто приходилось наблюдать, когда забои выработок находились в зонах разломов. Причем, с большой долей уверенности, такие землетрясения считались наведенными, связанными с горными работами. В условиях строительства подземного сооружения, когда в забоях тоннеля ежедневно проводится по несколько взрывов, трудно объективно разделить сейсмические воздействия от этих взрывов и землетрясений. Для анализа таких событий привлекали всю доступную информацию: опрос людей, которые были на момент события в выработке, записи в горных журналах, сейсмометрические материалы.

Наиболее четко взаимосвязи сейсмичности со случаями масштабных динамических проявлений горного давления можно было прослеживать, когда одновременно в нескольких раскрытых забоях, находящихся в течение некоторого времени в неустойчивых зонах разломов, начинали очень интенсивно развиваться процессы обрушений и выносов водно-грунтовых масс. Тогда же случались землетрясения в окрестностях тоннеля, с некоторой задержкой или практически в одно и то же время. Более крупным выбросам предшествовали мелкие вывалы-выносы.

Об энергии влияния гидравлических и механических ударов при вывалах-выносах на формирующиеся очаги землетрясений можно судить по нагрузке, которую эти удары оказывали на забой. При выбросе 200 м3 и 6000 м3 она могла достигать соответственно 0,2 и 6 МПа. Безусловно, что такие удары оказывали влияние на всю геогидродинамическую систему Ангараканской депрессии и гидравлически связанных с ней тектонических нарушений. Известны многие случаи, когда местные слабые землетрясения и динамические проявления горного давления в забоях взаимодействовали между собой.

При проходке зоны Ангараканской депрессии крупная авария с человеческими жертвами случилась 20 сентября 1979 года. Комиссия Министерства транспортного строительства СССР в акте от 25 сентября сделала вывод, что наиболее достоверной причиной аварийного выброса следует считать гидродинамический удар, возникший в результате неcпрогнозированного неблагоприятного сочетания техногенных и природных факторов, в том числе сейсмических. Было отмечено, что эти факторы за длительное время ведения горнопроходческих работ по зоне депрессии привели к резкому ослаблению окружающего выработку массива горных пород, вплоть до образования плывунного состояния в рыхлых отложениях, что неоднократно проявлялось в разведочной штольне и ее забое.

При строительстве Северо-Муйского и других тоннелей БАМа произошло еще много подобных случаев. Вывод, который можно сделать на основе имеющихся данных, заключается в том, что существует взаимодействие сейсмических событий в районе подземных выработок с динамическими проявлениями в них горного давления. Эти проявления наиболее опасны, когда забои выработок находятся в неустойчивых обводненных зонах разломов. Поскольку тектоника и сейсмичность в районе Северо-Муйского тоннеля функционируют как единая динамическая система, то и реакция такой систеРис. 3. Фотографии разрушений породы у сочленения выработок Май 2020 Подземные горизонты №23 25 тоннели мы на внешние воздействия оказывается практически единовременной.

УПРАВЛЕНИЕ РИСКАМИ

Проходка тоннеля велась одновременно со стороны восточного и западного порталов. Для ускорения строительства через каждые 500-600 м между разведочной штольней и основным тоннелем проектом были предусмотрены сбойки для открытия дополнительных забоев. Самое большое количество одновременно работающих забоев в тоннеле и штольне составляло соответственно 10 и 5. При проходке применяли щитовой и горный способы. В зависимости от геологических условий при строительстве штольни и тоннеля были опробованы различные технологические схемы [2]. В них определялся порядок ведения работ по разработке породы, крепления забоя, варианты конструкций временной крепи и возведения обделки, типы оборудования, его размещение в тоннеле, расходы материалов, электроэнергии, состав бригад и сроки работ. На основе технологических схем разрабатывались проекты производства работ и технологические карты для конкретных условий строительства.

Отработанные схемы при строительстве тоннеля позволяли определять наиболее эффективные комплексы современного высокопроизводительного оборудования и машин для проходки и возведения различных видов обделки. Для сооружения постоянной обделки тоннеля:

  • на припортальных участках в обводненных, неустойчивых, рыхлых и сильнотрещиноватых грунтах с коэффициентом крепости f = 0,6 ÷ 2 использовали сборную обделку из чугунных тюбингов диаметром 8,5 и 9,5 м;
  • в зонах тектонических разломов и сильнотрещиноватых грунтах с f = 2 ÷ 4 применяли монолитные усиленные железобетонные обделки;
  • на участках с устойчивыми и слабо трещиноватыми грунтами с f ≥ 4 устраивали монолитные бетонные обделки. При сооружении стволов применялся буровзрывной способ проходки заходками на одно кольцо обделки.

Из-за больших напоров трещинножильных вод происходили неоднократные их прорывы в выработанное пространство с выносом песка и мелкообломочного материала. Так, в период с сентября по октябрь 1978 года проходка ствола №3 была приостановлена в связи с прорывом воды в забой дебитом Q = 90 м3 /ч. Далее с декабря и по сентябрь 1979 года проходка не производилась из-за внезапного прорыва с дебитом 300–360 м3 /ч. При сооружении ствола №2 в результате больших водопритоков пластовых вод (Q ~180 м3 /ч) с выносом песчаного материала была деформирована чугунная крепь в интервале 42,5–52,5 м.

Для гидроизоляции крепи по всей глубине стволов производился комплекс работ, включающий в себя чеканку швов свинцовой проволокой с контрольной подчеканкой, чеканку цементом БРЦ и контрольный тампонаж тюбинговой колонны.

Для понижения уровня подземных вод производилось бурение вертикальных водопонизительных скважин глубиной до 270 м и оборудование их глубинными насосами типа ЭЦВ 10-63-270.

На стволе №1, несмотря на то, что в результате работы скважин уровень подземных вод был понижен с отметки 36 м до 153 м, водоприток значительно уменьшить не удалось. На отметке 70–72 м он составил ~200 м3 /ч, а на отметке 156 м, при пройденном стволе до глубины 244 м, произошел прорыв трещинножильных вод, приведший к затоплению ствола до отметки 74 м. В связи с наличием больших водопритоков проходка велась в искусственно замороженных породах в интервале 0–302 м. В интервале 72–302 м применялась цементация с шагом 20–30 м.

Для проходки основного тоннеля в зонах разломов в соответствии с государственной научно-технической программой были разработаны и применены практически новые технологии и специальные способы работ. Без их использования осуществить успешное строительство Северо-Муйского тоннеля было бы весьма проблематично и вообще вряд ли возможно.

Так, впервые в нашей стране были разработаны и применены в сложных горно-геологических условиях и на участках разломов [2]:

  • технология проходки подземных выработок с устройством арочно-бетонной крепи и двухслойной обделки;
  • конструкции опережающих экранов из труб;
  • взрыво-инъекционный метод упрочнения грунтов;
  • в опытном порядке — замораживание обводненных грунтов жидким азотом

Строительство Северо-Муйского тоннеля стало для тоннельщиков нашей страны серьезным вызовом, с которым отрасль успешно справилась. в настоящее время возникла необходимость сооружения второго северо-муйского тоннеля, что также потребует длительной концентрации усилий широкого круга специалистов. 

Для проходки зон разломов были усовершенствованы и откорректированы для применения в реальных условиях известные специальные способы работ по инъекционному закреплению грунтов, комплексному водопонижению, заполнению пустот, образованных при выносах породы из сводовой части, и другие. Также, впервые в стране применены передовые зарубежные техника и технологии проходки зон разломов. На удароопасных участках осуществлялся ряд мероприятий по защите тоннельных выработок от негативных последствий динамических проявлений горного давления. Так, на участках с прогнозируемым высоким уровнем напряжений для уменьшения взаимного влияния между тоннелем и штольней были увеличены целики. Для разгрузки напряжений по контуру выработок применялось регулирование скоростей проходки, в том числе с ее остановкой на время от нескольких суток до недели и более.

КОНТРОЛЬ ПРИРОДНЫХ РИСКОВ

Управление природно-техногенными рисками невозможно без их контроля. При строительстве Северо-Муйского тоннеля постоянно уточнялись инженерно-геологические условия проходки путем опережающего бурения горизонтальных разведочных скважин с отбором керна из забоев разведочной штольни. Для уточнения условий проходки и прогноза состояния грунтов впереди забоя, кроме разведочного бурения, применялись геофизические методы. В частности, метод естественного импульсного электромагнитного излучения (ЕИЭМПЗ) и, в опытном порядке, георадар Московского инженерно-физического института (МИФИ).

Для контроля природно-техногенных рисков при строительстве северо-муйского тоннеля применялся широкий комплекс геомеханических и геофизических исследований, без чего было бы невозможно разрабатывать и осуществлять мероприятия по защите тоннельных выработок от проявления негативных факторов в сложных горно-геологических условиях.

Выполнялись натурные исследования напряженно-деформированного состояния обделки. При строительстве тоннеля были смонтированы замерные станции, оснащенные датчиками, фиксирующими местные суммарные деформации конструкций от горного давления, гидростатики и температурных воздействий, а также сейсмопроявлений.

Вычислялись напряжения в обделках тоннеля, результаты сравнивались с запасом несущей способности. Эти данные служили целям оперативного контроля напряженно-деформированного состояния существующих крепей и обделок, а для новых участков — основой для своевременного вмешательства в конструктивные изменения обделок.

Замерные станции на Северо-Муйском тоннеле монтировались, начиная с 1978 года, в различных горногеологических условиях. Использовались струнные измерительные преобразователи линейных деформаций типа ПЛДС, предназначенные для измерения относительных линейных деформаций бетонных, железобетонных и других элементов сооружений при контрольных наблюдениях и натурных исследованиях их состояния. Преобразователи закладывались в бетон или устанавливались непосредственно на поверхности сооружений. Инсталлированные в конструкции замерные станции продолжали поставлять информацию об изменениях НДС и на этапе эксплуатации тоннеля, большинство из них и сейчас находятся в работоспособном состоянии.

Учитывая высокую сейсмическую активность района, особое внимание при строительстве и последующей эксплуатации тоннеля уделялось проявлениям напряженно-деформированного состояния в виде остаточных деформаций, зарегистрированных при долговременных наблюдениях на замерных станциях [3,4].

На станции №8 в разведочной штольне на ПК 78+13, расположенной в блоке В3, датчики ПЛДС-400 были установлены через трещину (см. фото — рис. 4), рассекающую блок крепких гранитов.

Происходившие в период строительства землетрясения средней интенсивности приводили к появлению остаточных деформаций на некоторых участках зон тектонических нарушений. В дальнейшем небольшие деформации наблюдались в основном за счет колебаний температуры воздуха в тоннеле.

Сейсмическая опасность различных участков тоннеля была оценена с учетом глубины заложения и конкретных инженерно-сейсмологических условий. Приращения сейсмической балльности рассчитывались по замеренным скоростям сейсмических волн и составляют относительно скального грунта для грунтов в основании тоннеля от –1,1 до +1,7 балла. Следует отметить, что при данных оценках не учитывали вероятные смещения по существующим разломам, которые при землетрясении в 9 баллов могут быть 1–1,2 м, а при 10 баллах — 5–7 м.

По данным сейсмогеологов, уже при землетрясениях 5-6 баллов и более скальные блоки по тектоническим зонам дробления могли переходить в движение и создавать угрозу разрушений в тоннеле. Исследования, проведенные после начала строительства показали, что:

перемычка, в которой располагается тоннель, является самой сейсмоактивной в Байкальской рифтовой зоне, а в ней наиболее активна зона Перевального разлома.

перемычка разделяет направления вспарывания разрывов при землетрясениях: восточнее они ориентированы на восток, на западе — к западу; с одной стороны это несколько снижает сейсмическую опасность для тоннеля, но с другой — растягивающие напряжения в массиве способствуют раскрытию трещин, что обеспечивает гидравлическую связь различных систем трещин и водопритоки, намного превышающие расчетные;

при землетрясении 9 баллов и выше в тоннеле по зонам разломов возможны вертикальные смещения до 1–1,2 м и раскрытия трещин;

сильные землетрясения могут сопровождаться опасными явлениями в виде смещений блоков пород, гидравлическими ударами.

На недостатки проведенных работ по сейсмическому микрорайонированию тоннелей указывал членкорреспондент РАН В. П. Солоненко [5]. Представляется, что до сих пор ряд вопросов сейсмомикрорайонирования тоннелей остается нерешенным.

Инструментальные данные о сейсмичности в районе расположения Северо-Муйского тоннеля получали с помощью регистрации местных землетрясений специально организованной в 1976 году локальной сетью сейсмостанций, а также по данным подземной сейсмостанции (рис. 5, 6), установленной в одной из вспомогательных штолен в зоне Ангараканской депрессии [6,7].

Это позволило изучать взаимосвязи между местными землетрясениями и изменениями напряженно-деформированного состояния горных пород вблизи подземных выработок, особенно в местах, где случались аварийные ситуации с выносом водно-грунтовых масс из забоев при проходке зон тектонических нарушений, а также на участках динамических проявлений горного давления.

Регистрирующая аппаратура размещалась в подземной выработке, а сейсмоприемники устанавливались на поверхности и в выработках. Глубина заложения тоннеля в точке установки сейсмоприемников на поверхности и в тоннеле составляла около 120 м. Полученные результаты показывали, что сейсмические колебания от восьми зарегистрированных землетрясений были интенсивностью около 4 баллов. Амплитудный уровень колебаний на дневной поверхности над тоннелем превышал максимальные амплитуды колебаний в тоннеле в 3±0,6 раза, что в приращениях сейсмической балльности составляет разницу почти в 1,5 балла

В период инструментальных наблюдений в исследуемом районе не происходило ощутимых и сильных землетрясений, по которым можно было бы оценить реальную сейсмическую опасность в тоннеле. Анализ записей землетрясения 6 июня1983 года (I0 = 3 балла, эпицентральное расстояние Δ = 40-45 км, глубина очага Н = 15-20 км), зарегистрированного подземной сейсмостанцией, показал, что реальное затухание амплитуд колебаний — с глубиной меньше расчетного. В спектре колебаний присутствуют два максимума на низких и на относительно высоких сейсмических частотах [6].

В целом для контроля природно-техногенных рисков при строительстве Северо-Муйского тоннеля применялся широкий комплекс геомеханических и геофизических исследований, без чего было бы невозможно разрабатывать и осуществлять мероприятия по защите тоннельных выработок от проявления негативных факторов в сложных горно-геологических условиях.

ВЫВОДЫ

Строительство Северо-Муйского тоннеля стало для тоннельщиков нашей страны серьезным вызовом, с которым отрасль успешно справилась. В настоящее время возникла необходимость сооружения Второго Северо-Муйского тоннеля, что также потребует длительной концентрации усилий широкого круга специалистов.

В некоторой степени задача строительства нового тоннеля упрощается тем, что сейчас мы обладаем более подробными знаниями о геологическом и гидрогеологическом строении вмещающего массива, а также возможностями современных технологий и организационно-технических решений. Кроме того, произошли значительные совершенствования систем контроля и управления рисками в подземном строительстве, апробированных в условиях сооружения большого количества транспортных тоннелей в различных регионах.

Разработано «Методическое руководство по комплексному горно-экологическому мониторингу при строительстве и эксплуатации транспортных тоннелей». Благодаря применению современных телекоммуникационных средств налажена оперативная обработка данных, которая расширяет возможности анализа текущей ситуации и сокращает время между началом воздействия негативного фактора и принятием управляющего решения, что, в свою очередь, повышает степень защищенности объекта. Тем не менее, учет опыта контроля и управления природно-техногенными рисками при строительстве существующего тоннеля чрезвычайно важен при разработке рекомендаций для сооружения Второго Северо-Муйского тоннеля.

Авторы статьи:

М. О. Лебедев, заместитель генерального директора по научно-исслед. работе

А. Д. Басов, ведущий научный сотрудник

К. В. Романевич, старший научный сотрудник

ОАО «НИПИИ «Ленметрогипротранс»

Источник: журнал "Подземные горизонты"

Литература

  1. Сейсмотектоника и сейсмичность района строительства БАМ. Cб. статей /АН СССР, Междуведомственный совет по сейсмологии и сейсмостойкому строительству при Президиуме АН СССР, Инс-т земной коры СО РАН СССР; отв. ред. М.М. Одинцов. — М.: Наука, 1980. 203 с.
  2. Технический отчет об изысканиях, проектировании и строительстве 1974-1989 гг. «Байкало-Амурская железнодорожная магистраль. Тоннели». — М.: ТИМР, 1999.
  3. Басов А.Д. Остаточные деформации и сейсмическая опасность зон разломов в условиях подземных выработок. // Вопросы инженерной сейсмологии. 2010, т. 37, №2, с. 34-47.
  4. Басов А.Д. Локальные нарушения напряженно-деформированного состояния геологической среды и землетрясения в районе СевероМуйского тоннеля // Вопросы инженерной сейсмологии. 2010, т. 37, № 1. С. 68–78.
  5.  Солоненко В.П., Николаев В.В., Семенов Р.М., Демьянович М.Г., Курушин Р.А., Хромовских В.С., Чипизубов А.В.. Геология и сейсмичность зоны БАМ. Сейсмогеология и сейсмическое районирование. Новосибирск: Наука, 1985. 192 с.
  6. Басов А.Д., Иванов Ф.И., Павлов О.В., Потапов В.А., Сильвестров С.Н. Организация подземной сейсмостанции на Северомуйском тоннеле. / Сб. «Сейсмостойкость транспортных и сетевых сооружений». — М.: Наука, 1986. С. 81-84.
  7. Павлов О.В., Потапов В.А., Седых А.И. К оценке относительной сейсмической опасности тоннелей. // Геология и геофизика. — Новосибирск: Наука СО, 1990. С. 109-115.